Structure of Perhydrotriphenylene

By Richard L. Harlow and Gautam R. Desiraju*
Central Research and Development Department, E. I. Du Pont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880-356, USA

(Received 12 April 1989; accepted 31 August 1989)

Abstract

C}_{18} \mathrm{H}_{30}, M_{r}=246 \cdot 44\), monoclinic, $P 2_{1} / n, Z$ $=4, a=18 \cdot 315$ (2), $b=15 \cdot 319$ (3), $c=5 \cdot 298$ (1) \AA, β $=95.53(1)^{\circ}, V=1479.5(1) \AA^{3}, F(000)=552, D_{x}=$ $1.106 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.057 \mathrm{~mm}^{-1}, T=173 \mathrm{~K}, R=0.041, w R=0.037$ for 932 independent reflections. The present report is an accurate redetermination of the crystal structure using low-temperature data. The crystal structure is close-packed and therefore distinct from those several clathrates formed by the title compound. All chemically equivalent bonds are in agreement.

Introduction. Perhydrotriphenylene, PHTP, $\mathrm{C}_{18} \mathrm{H}_{30}$ forms a large number of inclusion compounds with small organic guest molecules. The crystal structure of the stable Form I of uncomplexed PHTP has been reported previously (Allegra et al., 1967) but is of very limited accuracy (two-dimensional data, $R=$ $0 \cdot 20$). The present study was undertaken since good crystals of the substance were obtained upon slow cooling of its saturated solutions in 1-methylnaphthalene, the solvent molecules being presumably too large to be included in a host:guest structure.

Experimental. Intensity data were collected on a colorless flat needle $0.24 \times 0.14 \times 0.55 \mathrm{~mm}$ on a Syntex P3 diffractometer. Unit-cell parameters were obtained from 31 reflections in the range $16 \leq 2 \theta \leq$ 26°. The unit cell was redefined in order to obtain a monoclinic angle closer to 90°. The ω-scan method was used with a scan width of $1 \cdot 80^{\circ} \omega$ (the crystals were very mosaic, a typical FWHM value for an ω scan was 0.80°) and the scan speed was between 2.90 and $14 \cdot 60^{\circ} \mathrm{min}^{-1}$. A total of 2690 reflections (2174 unique) was collected with $4.5<2 \theta<47 \cdot 0^{\circ}$ (beyond 40°, the number of observed intensities fell off rapidly) and in the range $-20 \leq h \leq 20 ; 0 \leq k \leq 17$; $-5 \leq l \leq 0$. Of these, 932 unique reflections were found to be non-zero with $I \geq 3 \cdot 0 \sigma(I)$. Three standard reflections ($02 \overline{2}, \overline{7} 4 \overline{1}$ and $\overline{8} 50$) were measured every 97 reflections and showed less than 2% variation. No absorption corrections were applied. The

[^0]structure was solved by direct methods using the program MULTAN (Germain, Main \& Woolfson, 1971) and full-matrix least-squares refinement was performed on F_{o} using a package of local programs (Calabrese, 1989). The C atoms were refined anisotropically, the six H atoms on the central ring isotropically, and the twelve other H atoms were placed in calculated positions. Refinement converged at $R=$ $0.041, \quad w R=0.037, \quad$ error-of-fit $=1.22, \quad \Delta / \sigma_{\max }=$ $0 \cdot 11 . \dagger$ The maximum peak in the final Fourier was $0.12 \mathrm{e} \AA^{-3}$. The scattering factors were taken from International Tables for X-ray Crystallography (1974).

Discussion. Atomic positions and equivalent isotropic temperature factors are listed in Table 1. The bond lengths and angles are given in Table 2. The atomic numbering scheme is given in Fig. 1. Each ring adopts a chair conformation and the configuration of every fused-ring junction is trans. The C-C bond lengths cluster into three groups: in the central ring, they vary over a narrow range from 1.529 to $1.540 \AA$ (2 e.s.d.'s); bonds emanating from the central ring vary from 1.520 to $1.532 \AA$; the remaining exterior bonds are shorter still, 1.508 to $1.522 \AA$. The crystal packing is shown in Fig. 2 and is characterized by normal or van der Waals $\mathrm{H}^{\cdots} \mathrm{H}$ contacts. The closest intermolecular contacts are: $\mathrm{H}(14)-\mathrm{H}(15), 2 \cdot 13 ; \mathrm{H}(7)-\mathrm{H}(18), 2 \cdot 14 ; \mathrm{H}(10)-$ $\mathbf{H}(11), 2 \cdot 16 \AA$. The crystal structure is, not surprisingly, quite different from those of the PHTP clathrates (Allegra et al., 1967). A considerable amount of recent work describes the use of PHTP as a complexing agent in host:guest compounds (Tsoucaris, 1987; Weber, 1987). It is normally difficult to obtain guestfree crystals of the PHTP host, uncommon solvents such as α-pinene and hexachlorobutadiene having been used for this purpose in the past (Allegra et al., 1967). Although naphthalene molecules are easily

[^1]Table 1. Fractional coordinates and isotropic thermal parameters

	x	y	z	$B_{\text {iso }} / B_{\text {eq }}$
C(1)	0.5211 (2)	0.1765 (2)	$0 \cdot 6832$ (7)	1.8 (1)*
C(2)	0.4953 (2)	0.2439 (2)	0.4801 (7)	1.8 (1)*
C(3)	0.5531 (2)	$0 \cdot 3156$ (2)	0.4636 (7)	1.9 (1)*
C(4)	0.6289 (2)	$0 \cdot 2782$ (2)	0.4198 (7)	1.9 (1)*
C(5)	0.6537 (2)	$0 \cdot 2062$ (2)	$0 \cdot 6113$ (6)	1.7 (1)*
C(6)	0.5947 (2)	$0 \cdot 1365$ (2)	$0 \cdot 6295$ (7)	1.7 (1)*
C(7)	$0 \cdot 4620$ (2)	0.1081 (2)	0.7123 (7)	2.6 (1)*
C(8)	0.3883 (2)	$0 \cdot 1470$ (2)	0.7566 (7)	2.7 (1)*
C(9)	$0 \cdot 3630$ (2)	$0 \cdot 2096$ (2)	0.5449 (7)	2.7 (1)*
C(10)	$0 \cdot 4193$ (2)	$0 \cdot 2802$ (2)	$0 \cdot 5196$ (7)	2.7 (1)*
C(11)	$0 \cdot 5306$ (2)	$0 \cdot 3865$ (2)	$0 \cdot 2675$ (7)	2.7 (1)*
C(12)	$0 \cdot 5875$ (2)	0.4580 (2)	$0 \cdot 2584$ (7)	$3 \cdot 3$ (1)*
C(13)	$0 \cdot 6621$ (2)	0.4204 (2)	$0 \cdot 2141$ (7)	3.0 (1)*
C(14)	$0 \cdot 6847$ (2)	$0 \cdot 3512$ (2)	$0 \cdot 4105$ (6)	$2 \cdot 6$ (1)*
C(15)	0.7271 (2)	$0 \cdot 1653$ (2)	0.5596 (6)	$2 \cdot 4$ (1)*
C(16)	0.7522 (2)	$0 \cdot 0942$ (2)	0.7483 (8)	2.7 (1)*
C(17)	$0 \cdot 6938$ (2)	0.0254 (2)	0.7611 (7)	2.7 (1)*
C(18)	0.6214 (2)	$0 \cdot 0655$ (2)	$0 \cdot 8185$ (6)	$2 \cdot 4$ (1)*
H(1)	0.5295 (16)	$0 \cdot 2104$ (22)	0.8474 (63)	3.4 (8)
H(2)	0.4923 (14)	$0 \cdot 2115$ (18)	0.3163 (55)	1.7 (7)
H(3)	0.5601 (15)	$0 \cdot 3450$ (20)	0.6229 (54)	1.9 (7)
H(4)	0.6233 (13)	$0 \cdot 2520$ (16)	$0 \cdot 2462$ (51)	$0 \cdot 6$ (6)
H(5)	0.6598 (15)	0.2344 (18)	0.7841 (54)	1.5 (6)
H(6)	$0 \cdot 5889$ (17)	$0 \cdot 1086$ (20)	0.4684 (62)	$2 \cdot 9$ (8)

* Refined with anisotropic thermal parameters.

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$.	1.533 (5)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1$.	$1.510(5)$
$\mathrm{C}(1)-\mathrm{C}(6) \quad 1$.	1.531 (5)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.5$	
$\mathrm{C}(1)-\mathrm{C}(7) \quad 1$	1.526 (5)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1$.	$1.522(5)$
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$.	1.533 (5)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$.	1.515 (5)
$\mathrm{C}(2)-\mathrm{C}(10) \quad 1$.	1.532 (5)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$.	1.519 (5)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$.	1.540 (4)	$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$.	1.508 (5)
$\mathrm{C}(3)-\mathrm{C}(11) \quad 1.53$	1.531 (5)	$\mathrm{C}(17)-\mathrm{C}(18) \quad 1 \cdot$	1.517 (5)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.5$	1.537 (4)	$\mathrm{C}(1)-\mathrm{H}(1) \quad 1.0$	1.01 (3)
$\mathrm{C}(4)-\mathrm{C}(14) \quad 1$.	1.520 (5)	$\mathrm{C}(2)-\mathrm{H}(2) \quad 1.0$	1.00 (3)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$.	1.529 (5)	$\mathrm{C}(3)-\mathrm{H}(3) \quad 0.9$	$0 \cdot 95$ (3)
$\mathrm{C}(5)-\mathrm{C}(15) \quad 1$.	1.532 (4)	$\mathrm{C}(4)-\mathrm{H}(4) \quad 1.0$	1.00 (3)
$\mathrm{C}(6)-\mathrm{C}(18) \quad 1$.	1.528 (4)	$\mathrm{C}(5)-\mathrm{H}(5) \quad 1.0$	1.01 (3)
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$.	1.514 (5)	$\mathrm{C}(6)-\mathrm{H}(6) \quad 0$	0.95 (3)
$\mathrm{C}(8)-\mathrm{C}(9) \quad 1$.	1.514 (5)		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	110.9 (3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) 110.5 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$111 \cdot 1$ (3)	$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	113.4 (3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	112.9 (3)	$\mathrm{C}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	113.0 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	110.8 (3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	111.0 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(10)$	111.8 (3)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	111.4 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)$	112.9 (3)	$\mathrm{C}(6)-\mathrm{C}(18)-\mathrm{C}(17)$	112.8 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112 \cdot 3$ (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	106 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	113.9 (3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	108 (2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	$110 \cdot 4$ (3)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{H}(1)$	108 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	112.4 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	105 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	110.5 (3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	107 (2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(14)$	113.1 (3)	$\mathrm{C}(10)-\mathrm{C}(2)-\mathrm{H}(2)$	109 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$112 \cdot 2$ (3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	109 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(15)$	112.6 (3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	105 (2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(15)$	111.3 (3)	$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{H}(3)$	106 (2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	111.8 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	106 (1)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(18)$	$113 \cdot 3$ (3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	109 (1)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(18)$	$110 \cdot 8$ (3)	$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{H}(4)$	106 (1)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$113 \cdot 4$ (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	107 (2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	110.4 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	105 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.9 (3)	$\mathrm{C}(15)-\mathrm{C}(5)-\mathrm{H}(5)$	108 (2)
$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$113 \cdot 0$ (3)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	109 (2)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	113.2 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	106 (2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 111.1 (3)	$\mathrm{C}(18)-\mathrm{C}(6)-\mathrm{H}(6)$	106 (2)

[^0]: * Permanent address: School of Chemistry, University of Hyderabad, PO Central University, Hyderabad 500 134, India.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52590 (6 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

